浙江大学 2013-2014 学年 秋冬 学期

《计算理论》课程期末考试试卷

课程号: <u>21120520</u> 开课学院: <u>计算机学院</u>
考试试卷: ☑ A卷 □ B卷
考试形式: ☑ 闭卷 □ 开卷,允许带 _____入场
考试日期: 2014 年1月15日,考试时间: 120分钟

学号

诚信考试,沉着应考,杜绝违纪

考生姓名

______所属院系

题序	1	2	3	4	5	6	总分
得分							
评卷人							

Zhejiang University Theory of Computation, Fall-Winter 2013 Final Exam

- 1. (24%) Determine whether the following statements are true or false. If it is true fill a \bigcirc otherwise a \times in the bracket before the statement.
 - (a) () Language $\{a^m b^n c^j | m, n, j \in \mathbb{N} \text{ and } m+n+j \ge 2014\}$ is regular.
 - (b) () Let L be a regular language, so is $\{ww^R | w \in \Sigma^* \text{ and } w \in L\}$.
 - (c) () Let L_1 and L_2 be two languages. If L_1L_2 is regular, then either L_1 or L_2 is regular.
 - (d) () Let L be a context-free language, then L^* is also context-free.
 - (e) () Language $\{w_1 \# w_2 \# \cdots \# w_n | n \in \mathbb{N}, \text{ for each } i, w_i \in \{a, b\}^* \text{ and for some } i, w_i \text{ is a palindrome} \}$ is context-free.
 - (f) () Let L be a context-free language, then so is $H(L) = \{x | \exists y \in \Sigma^*, |x| = |y| \text{ and } xy \in L\}.$
 - (g) () Language { " M_1 " " M_2 " | M_1 and M_2 are FA, $L(M_1) \subseteq L(M_2)$ } is undecidable.
 - (h) () There's a function φ such that φ can be computed by some Turing machines, yet φ is not a primitive recursive function.
 - (i) () If L_1, L_2 , and L_3 are all recursively enumerable, then $L_1 \cap (L_2 \cup L_3)$ must be recursively enumerable.
 - (j) () Let L_1 and L_2 be two recursively enumerable language. If $L_1 \cup L_2$ and $L_1 \cap L_2$ are recursive, then both L_1 and L_2 are recursive.
 - (k) () Let L be a recursively enumerable language and $L \leq_{\tau} \overline{H}$, then L is recursive, where $H = \{ "M" "w" | \text{ Turing machine } M \text{ halts on } w \}.$
 - (l) () The set of undecidable languages is uncountable.

- 2. (20%) Decide whether the following languages are regular or not and provide a formal proof for your answer.
 - (a) $L_1 = \{uvu^R | u, v \in \{a, b\}^+\}$ (b) $L_2 = \{uvu | u, v \in \{a, b\}^+\}$ where $L^+ = LL^*$.

- 3. (20%) Let $L_3 = \{ab^m c^n a^{m+2n} c | m, n \in \mathbb{N}\}.$
 - (a) Give a context-free grammar for the language L_3 .
 - (b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

(b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

4. (12%) Try to construct a Turing Machine to decide the following language

$$L = \{ww^R | w \in \{0, 1\}^*\}.$$

Where w^R is the inverse of w. Always assume that the Turing machines start computation from the configuration $\bowtie w$. When describing the Turing machines, you can use the elementary Turing machines described in textbook.

5. (12%) Show that the function: $\varphi : \mathbb{N} \to \mathbb{N}$ given by

 $\varphi(x) = \begin{cases} x \mod 3, & \text{if } x \text{ is a composite number;} \\ x^2 + 1, & \text{otherwise.} \end{cases}$

is primitive recursive.

6. (12%) Consider the problem

 $L_{even} = \{$ "M" | M is a TM and L(M) contains at least one string of even number of b's $\}$

- (a) Show that L_{even} is recursively enumerable.
- (b) Show that L_{even} is non-recursive.

Enjoy your Spring Festival!