浙江大学 2006 - 2007 学年秋冬季学期

《计算理论》课程期末考试试卷

开课学院:<u>计算机学院</u> 考试形式:**闭卷** 允许带_____入场 考试时间:2007年1月24日, 所需时间: 120分钟,任课教师:

考生姓名:			学	:号:	专业:				
题序	_	1	[1]	四	五	六	七	八	总 分
得分									
评卷人									

1. (20%) Tell whether the statements below are true (T) or false (F).

- (1) (**F**) If a DFA *M* contains a self-loop on some state *q*, then *M* must accept an infinite language.
- (2) (F) {w : w is a regular expression for { $a^n b^m : n + m \le 2007$ }} is a finite language.
- (3) (F) $P(\{n \in N : n \le 2007\})$ is uncountable. (P(A) is the power set of A.)
- (4) (**F**) The concatenation of a regular language and a non-regular language is necessarily non-regular.
- (5) (**T**) Suppose that L is context-free and R is regular, L R is context-free language.
- (6) (**T**) The nondeterministic Turing machine is not stronger more than the other Turing machines on the computability.
- (7) (**F**) The complement of every recursive enumerable language is necessarily non-recursive enumerable.
- (8) (**T**) The class of recursively enumerable language is closed under union and intersection.
- (9) (**T**) $\emptyset \subseteq \{\emptyset, a\}.$
- (10) (T) There is no algorithm that decides, for an arbitrary given Turing machine *M* and input string *w*, whether or not *M* accepts *w*.

2. (12%) Say whether each of the following languages is regular or non-regular, and prove your answers.

(a) $\dot{L}_1 = \{a^{i - j} : i = 3j\}$ (b) $L_2 = \{w : w \in \{a, b\}^* \text{ and } w \neq w^R \}$

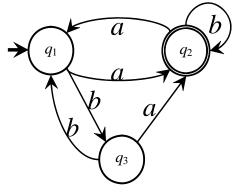
Solution :

(a) L_1 is regular. Because L_1 can be rewritten as $L_1 = \{a^{2n} : n=0,1, ...\}$ And its regular expression is $(aa)^*$

(b) L_2 is not regular.

Suppose L_2 is regular language, then the complement of L_2 is also regular language. But the complement of L_2 is $\{w: w \in \{a, b\}^* \text{ and } w = w^R\}$ that can be proved not regular by using Pumping theorem.

3. (14%) Describe the language accepted by the following finite automaton, and give a Context-free Grammar for the language.



Solution :

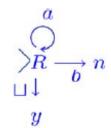
(a) The language accepted by the given finite automaton is $L=(aa \cup bb)^*(a \cup ba)b^*((aa)^* \cup (ab^*a)^*)$ (b) The same language is generated by the CFG $G=(V, \Sigma, R, S)$, where $V=\{q_1, q_2, q_3, a, b\}, \Sigma=\{a, b\}, S=q_1,$ $R=\{ q_1 \rightarrow aq_2,$ $q_1 \rightarrow bq_2,$ $q_2 \rightarrow aq_1,$ $q_2 \rightarrow bq_2,$ $q_3 \rightarrow aq_2,$ $q_3 \rightarrow bq_1,$ $q_2 \rightarrow e\}$ 4. (18%) Consider the pushdown automaton $P = \{K, \Sigma, \Gamma, \Delta, s, F\}$ where:

$K = \{s, f\}$	Δ :	((s, a, e), (f, e))
$\sum = \{a, b\}$		((s, b, e), (s, b))
$\varGamma = \{b\}$		((s, a, b), (s, b))
$F = \{ f \}$		((s, e, e), (f, e))
		((f, a, e), (f, e))
		((f, b, e), (s, b))

Describe the language accepted by P, and give a Turing machine M that decides the same language.

Solution :

- The language accepted by **P** is $L=\{a^*\}$.
- A Turing machine *M* decides the language *L* is:



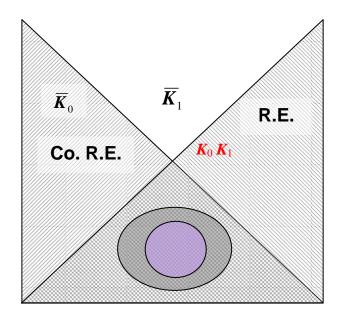
5. (10%) Show the following function that is primitive recursive.

$$f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x, & \text{if } x \text{ is even} \end{cases}$$

Solution :

•
$$f(x) = (x+1) \cdot rem(x, 2) + x \cdot (1 - rem(x, 2))$$

6. (14%) Let $K_0 = \{ M^* W^* : M \text{ halts on input string } W \}, K_1 = \{ M^* : M \text{ halts on input string } M^* \}$. Try to sign the languages of \overline{K}_0 , \overline{K}_1 , recursive, context-free, regular to the corresponding zone of the following figure: (Note: Co. R.E. means that the complement of R.E. set is also R.E. .)



7. (12%) Show that the following language:

 $H = \{$ "*M*" : *M* is a Turing Machine and halts on empty string $\}$ is recursively enumerable. An informal description suffices.

Solution :

The universal Turing machine *U* can semidecides the language {"*M*" "*w*": *M* is a TM and halts on *e*}