it is true fill a T otherwise a F in the bracket before the statement.

- (a) () For any regular languages $L_1\subseteq \mathbb{L}_2\subseteq \cdots\subseteq L_n\subseteq \cdots$, then the union $\cup_{n=1}^{n=\infty}L_n$ is also regular.
- (b) () If A is regular and both of B and $A \cap B$ are non-regular, then $A \cup B$ is non-regular.
- (c) () Let $D_{DFA} = \{ {}^{u}M^{n} | M \text{ is a DFA}, {}^{u}M^{n} \notin L(M) \}$, then D_{DFA} is not regular, but recursive, where ${}^{u}M^{n}$ is the encoding of DFA M, just as Turing Machine.
- (d) () The language $\{a^i b^j c^k | i, j, k \in \mathbb{N}, \text{ and } k \neq i+j\}$ is context-free.
- (e) () A is recursively enumerable and B is regular, then $A\cap B$ is recursive.
- (f) () Let A and B be two recursively enumerable language. If both $\overline{A \cup B}$ and $\overline{A \cap B}$ are also recursively enumerable, then A and B are recursive.
- (g) () Let $A=\{\text{``M''}\mid \text{TM }M\text{ halts on at least 2020 strings}\}.$ Suppose $A\leq_{\tau}\overline{B},$ then B is not recursively enumerable.
- (h) () Let A,B,C be arbitrary languages. If $A\leq C$, $B\leq C$ and C is recursively enumerable, then $A \cap B$ is recursively enumerable.
- (i) () Let A be a language, if there is a Turing machine M halts on x for every $x \in A$, then A is recursive
- (j) () If A is a Turing-enumerable language, then either A is recursive, or \overline{A} is not Turing-enumerable .
- (k) () There are some languages in \mathbb{NP} are not recursive.
- (l) () There are some languages that cannot be semi-decided by any Turing

THRORY OF COMPUTATION FINAL EXAM (PAGE 3 OF 4) $(q, \sigma, \beta) \mid (p, \gamma)$

4. (12 pts) Construct a Turing machine that decides the following language:

 $L_4 = \{ucvcww^R | u, v, w \in \{a,b\}^*\}$

5. (10 pts) On Primitive Recursive Function Show the following function $\varphi: \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ by

$$\varphi(x,y) = \left\{ \begin{array}{ll} x/2 + 2y, & \text{if x is even, and y is a composite number} \\ |x-y|, & \text{otherwise} \end{array} \right.$$

is primitive recursive.

THEORY OF COMPUTATION FINAL EXAM (PAGE 2

(18 pts) On FA AND REGULAR LANGUAGES Say whether each of the following languages is regular or not regular? Prove your

answers.
(a)
$$L_1 = \{uvu^R | u \in \{a, b\}^+, \text{ and } v \in \{a, b\}\}.$$

(b) $L_2 = \{uvu^R | u \in \{a, b\}^+, \text{ and } v \in \{a, b\}^+\}.$

3. (18 pts) On PDA and Context-Free Languages Let $L_3 = \{xx^Ryy^R|x, y \in \{a, b\}^+, |y| \text{ is odd, and bha is a substring of } x\}$.

- (a) Construct a context-free grammar that generates the language L_3 .
- (b) Construct a pushdown automata that accepts L_3 . SOLUTION: (a)

(b) The PDA $M=(K,\Sigma,\Gamma,\Delta,s,F)$ is defined below: