浙江大学 2017-2018 学年 秋冬 学期

《计算理论》课程期末考试试卷

课程号: <u>21120520</u>	开课学院: _计算机学院	
考试试卷: A卷	□ B卷	
考试形式: 🗹 闭卷	□开卷,允许带	入场
考试日期 : <u>2018</u> 年 <u>1</u>	_月 <u>24_</u> 日 ,考试时间: <u>120_</u> 分	·钟

学号

诚信考试,沉着应考,杜绝违纪

考生姓名_

_____ 所属院系_

题序	1	2	3	4	5	6	总分
得分							
评卷人							

1. (24 pts) Determine whether the following statements are true or false. If it is true fill a T otherwise a F in the bracket before the statement.

- (a) () Let A, B be two languages. If both A and $A \cup B$ are regular, then B is definitely regular.
- (b) () If A is regular and B is non-regular, then $A \circ B$ must be non-regular.
- (c) () Language $\{xcy|x, y \in \{a, b\}^*, |x| \le |y| \le 3|x|\}$ is context-free.
- (d) () Every regular language can be generated by a context-free grammar.
- (e) () If A is recursive and $B \subseteq A$, then B is recursive as well.
- (f) () Recursively enumerable languages are always infinite.
- (g) () There's a function φ such that φ can be computed by some Turing machines, yet φ is not a primitive recursive function.
- (h) () Let A and B be recursively enumerable languages and $A \cap B = \emptyset$. If $\overline{A \cup B}$ is also recursively enumerable, then both A and B is decidable.
- (i) () The language {"M" "w" | TM M accepts w in less than 2018 steps } is recursive.
- (j) () The language {"M" | TM M accepts exactly 2018 strings} is recursively enumerable but not recursive.
- (k) () Let $H_e = \{ "M" | TM M \text{ halts on } e \}$. If $H_e \leq \overline{L}$, then L is recursive enumerable but not recursive.
- (l) () A language L is recursive if and only if it is Turing-enumerable.

- 2. (18 pts) ON FA AND REGULAR LANGUAGES Say whether each of the following languages is regular or not regular? Prove your answers, where $\{a, b\}^+ = \{a, b\}^* \circ \{a, b\}$.
 - (a) $L_1 = \{wtw | w, t \in \{a, b\}^+\}$

(b) $L_2 = \{wtw | w, t \in \{a, b\}^*\}$

3. (20 pts) ON PDA AND CONTEXT-FREE LANGUAGES Let $L_3 = \{ww^R ca^m b^n | w \in \{a, b\}^*, m, n \in \mathbb{N}, m \neq n\}.$

(a) Construct a context-free grammar that generates the language L_3 .

(b) Construct a pushdown automata that accepts L_3 .

SOLUTION:

(a)

(b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

	(q,σ,β)	(p,γ)
K =		
$\Sigma = \{a, b, c\}$		
$\Gamma = $		
<i>s</i> =		
$F = _$		

4. (10 pts) ON TURING MACHINE Design a single tape Turing machine M that decides the language L_4

$$L_4 = \{uvcww^R | u, v, w \in \{a, b\}^*, |u| = 2|v|\}$$

When describing the Turing machines above, you can use the elementary Turing machines described in textbook. Always assume that your Turing machine starts from the configuration $\triangleright \sqcup x$, where x is the input string.

5. (10 pts) ON PRIMITIVE RECURSIVE FUNCTION Show the following function $\varphi_k : \underbrace{\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}}_k \mapsto \mathbb{N}$, and $k \in \mathbb{N}, k \ge 2$

$$\varphi_k(n_1, n_2, \cdots, n_k) = \max_k \{n_1, n_2, \cdots, n_k\}$$

is primitive recursive.

6. (18 pts) ON UNDECIDABILITY

Classify whether each of the following languages are recursive, recursively enumerable but not recursive, or non-recursively enumerable. Prove your answers, but you may not simply appeal to Rice's theorem.

(a) $L_5 = \{ "M" | M \text{ is a TM}, \text{ and } L(M) \text{ is uncountable} \}$

(b) $L_6 = \{ "M" | TM M \text{ accepts at least two strings of different lengths} \}$